Home
Class 11
MATHS
If the line y=x+c touches the ellipse 2x...

If the line `y=x+c` touches the ellipse `2x^(2)+3y^(2)=1` then `c=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line 3x+4y=sqrt(7) touches the ellipse 3x^(2)+4y^(2)=1, then the point of contact is

The values of lamda for which the line y=x+ lamda touches the ellipse 9x^(2)+16y^(2)=144 , are

The value of |C| for which the line y=3x+c touches the ellipse 16x^2+y^2=16 is:

Show that the line y= x + sqrt(5/6 touches the ellipse 2x^2 + 3y^2 = 1 . Find the coordinates of the point of contact.

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

The line 2x+3y=12 touches the ellipse (x^(2))/9+(y^(2))/4=2 at the points (3,2).

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 ,

If the line ax + y = c , touches both the curves x^(2) + y^(2) =1 and y^(2) = 4 sqrt2x , then |c| is equal to:

The line y = 4x + c touches the hyperbola x^(2) - y^(2) = 1 if