Home
Class 12
MATHS
If n is odd (n)C(1)+^(n)C(3)+^(n)C(5)+.....

If `n` is odd `(n)C_(1)+^(n)C_(3)+^(n)C_(5)+.........+^(n)C_(2[n/2]-1)=` where `[.]` denotes greatest integer

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is odd nC_(1)+nC_(3)+nC_(5)+......+nC_(2)[(n)/(2)]-1 where [] denotes greatest integer

If n is a natural number and 1 <= n <= 100 ,then the number of solutions of [(n)/(2)]+[(n)/(3)]+[(n)/(5)]=(n)/(2)+(n)/(3)+(n)/(5) (where [.] denotes the greatest integer function) is

What is ""^(n)C_(1)+ ""^(n)C_(2)+……… + ""^(n)C_(n) ?

f(n)=(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(21))/(1^(3)+2^(3)+3^(3)+......+n^(3)) then (where [.] denotes greatest integer function)

If C_(r) stands for nC_(r), then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-......+(-1)^(n)(n+1)C_(n)^(2)], where n is an even positive integer,is

If n>=2 then 3.C_(1)-4.C_(2)+5.C_(3)-.........+1)^(n-1)(n+2)*C_(n)=

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .