Home
Class 12
MATHS
If xsin(a+y)+sina cos(a+y)=0, prove that...

If `xsin(a+y)+sina cos(a+y)=0`, prove that `(dy)/(dx)=sin^2(a+y)/sina`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)