Home
Class 12
MATHS
Prove that (adj adj A)=|A|^(n-2)A...

Prove that `(adj adj A)=|A|^(n-2)A`

Promotional Banner

Similar Questions

Explore conceptually related problems

(i)Prove that (adj adjA)- |A|^(n-2)A (ii) Find the value of |adj adj adj A| in terms of |A|

If A is a square matrix of order n, prove that |A adj A|=|A|^(n)

Prove that : adj.O=O

Prove that: adj.O=O

True or False : If A any matrix of order nxxn (nge2) , then adj (Adj A ) = |A|^(n-2) A

If A= [{:(8,-4),(-5," "3):}] , verify that A(adj A)= (adj A) A= |A|I_(2) .

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A is an invertible matrix of order nxxn, (nge2), then (A) A is symmetric (B) adj A is invertible (C) Adj(Adj A)=|A|^(n-2)A (D) none of these