Home
Class 11
MATHS
Im,n=int x^(m)(1-x)^(n)dx...

Im,n=int x^(m)(1-x)^(n)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

If m, n in N , then l_(m n) = int_(0)^(1) x^(m) (1-x)^(n) dx is equal to

If I(mn)=int_(0)^(1)x^(m)(1-x)^(n)dx,(m, n epsilon I, m,n ge 0 ) , then

int(1)/(x+x^(-n))dx=