Home
Class 12
MATHS
Prove that: In=int0^oox^(2n+1)e^-x^2dx=(...

Prove that: `I_n=int_0^oox^(2n+1)e^-x^2dx=(n !)/2,n in Ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

The value of int_0^oox^(2n+1)dote^(-x^2)dx is (n in W)

Prove that : int_(0)^(1)x(1-x)^(n)dx=1/((n+1)(n+2))

If int_0^oox^(2n+1)dote^(-x^2)dx=360 , then the value of n is___

If int_0^oox^(2n+1)dote^(-x^2)dx=360 , then the value of n is___