Home
Class 12
MATHS
A unit vector perpendicular to 3i + j +...

A unit vector perpendicular to 3i + j +2 k and 2i-j + k is

A

`(3i-j-5k)/(sqrt(35))`

B

`(3i+j-5k)/(sqrt(35))`

C

`(-3i+j+5k)/(sqrt(35))`

D

`(3i+j+5k)/(sqrt(35))`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MODEL TEST PAPER 02

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • MODEL TEST PAPER 3

    KCET PREVIOUS YEAR PAPERS|Exercise (MATHEMATICS)|60 Videos

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to the vectors hat(i) -hat(j) + hat(k), 2hat(i) + 3hat(j) -hat(k) is

Find the unit vector perpendicular to the plane ABC where the position vectors A, B and C are 2hat(i) - hat(j) + hat(k), hat(i) + hat(j) + 2hat(k) and 2hat(i) + 3hat(k) .

Knowledge Check

  • A unit vector perpendicular to both i+j and j+k is

    A
    i-j+k
    B
    i+j+k
    C
    `(i+j+k)/sqrt3`
    D
    `(i-j+k)/sqrt3`
  • If vec a = -i +j +k, vec b = i-j+k , then a unit vector perpendicular to vec a and vec b is

    A
    k
    B
    `1/sqrt2 (i+j)`
    C
    `1/sqrt (j+k)`
    D
    `1/sqrt 2(i-j)`
  • A unit vector perpendicular to the plane of vec a = 2i-6j-3k and vec b = 4i+3j-k is

    A
    `1/sqrt26(4i+3j-k)`
    B
    `1/7(2i-6j-3k)`
    C
    `1/7(3i-2j+6k)`
    D
    `1/7 (2i-3j-6k)`
  • Similar Questions

    Explore conceptually related problems

    Given vec a = i+j-k, vec b = -i+2j+k and vec c = -i+2j-k , a unit vector perpendicular to both vec a + vec b and vec b + vec c is

    If vec OA = i-j and vec OB = j-k , the unit vector perpendicular to the plane AOB is

    A unit vector perpendicular to the plane containing the vectors overset(^)( i) - overset(^)(j)+overset(^)(k ) and overset(^)(-i)+overset(^)(j)+overset(^)(k) is...

    If veca = 2 hat i + 3 hat j - hat k , vec b = hat i + 2 hat j - 5 hat k, vec c= hat 3i + 5 hatj = hat k , then a vector perpendicular to vec a and in the plane containing vec b and vec c is

    The number of vectors of unit length perpendicular to the vectors vec a = 2i+j+2k and vec b = j+k .