Home
Class 12
MATHS
If (logx)/(a-b)=(logy)/(b-c)=(logz)/(c-a...

If `(logx)/(a-b)=(logy)/(b-c)=(logz)/(c-a)` then xyz=

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 9

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos
  • SOLVED PAPER 2011

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|58 Videos

Similar Questions

Explore conceptually related problems

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) ,then the value of x^(b+c).y^(c+a).z^(a+b) is

If (lna)/(b-c)=(lnb)/(c-a)=(lnc)/(a-b) , prove the following . a^(b^2+bc+c^2).b^(c^2+ca+a^2).c^(a^2+ab+b^2)=1

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a.b^b.c^c=1

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If (Ina)/(b-c)=(Inb)/(c-a)=(Inc)/(a-b) , prove the following . a^a+b^b+c^cge3

In a DeltaABCV if (b+c)/(11)=(c+a)/(12)=(a+b)/(13) then cos C=

If x(dy)/(dx)=y(logy-logx+1), then the solution of the equation is :

Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) =0

If (a+b)/(1-a b), b, (b+c)/(1-b c) are in A.P, then a, (1)/(b), c are in

If y = (x^(a)/(x^(b)))^(a+b) .(x^(b)/(x^(c)))^(b+c) .(x^(c)/(x^(a)))^(c+a) then, dy/dx =