Home
Class 12
MATHS
(veca.veci)veci+(veca.vecj)vecj+(veca.ve...

`(veca.veci)veci+(veca.vecj)vecj+(veca.veck)veck`=

A

`veca`

B

`2veca`

C

`3veca`

D

`vec0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 9

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos
  • SOLVED PAPER 2011

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|58 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb,vecc be the three vectors such that veca.(vecb+vecc)+vecb.(vecc+veca)+vecc.(veca+vecb)=0 and |veca|=1,|vecb|=4,|vecc|=8, then |veca+vecb+vecc| equals :

veca. (veca xx vecb)=

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

If veca, vecb, vecc are three non-zero, non-coplanar vectors and vecb_(1) = vecb - (vecb.veca)/(|veca|_(2)) veca, vecb_(2) =vecb + (vecb.veca)/(|veca|^(2)) veca, vecc_(1) =vecc- (vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2)) vecb _(1), vecc _(2)=vecc- (vecc.veca)/(|veca|^(2))veca-(vecb_(1).vecc)/(|vecb_(1)|^(2)) vecb_(1), vecc_(3)=vecc-(vecc.veca)/(|vecc|^(2)) vecb _(1),vecc_(4)=vecc - (vecc. veca)/(|vecc|^(2)) veca + (vecb. vecc)/(|vecb|^(2)) vecb_(1), then the set of orthogonal vectors is :

For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff:

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]