Home
Class 12
MATHS
Inverse of the matrix [[cos 2 theta,-sin...

Inverse of the matrix `[[cos 2 theta,-sin 2 theta],[sin 2 theta , cos 2 theta]]` is

A

`[[cos2theta,-sin2theta],[sin2theta,cos2theta]]` is

B

`[[cos2theta,sin2theta],[sin2theta,-cos2theta]]` is

C

`[[cos2theta,sin2theta],[sin2theta,cos2theta]]` is

D

`[[cos2theta,sin2theta],[-sin2theta,cos2theta]]` is

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 9

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos
  • SOLVED PAPER 2011

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|58 Videos

Similar Questions

Explore conceptually related problems

The multiplicative inverse of : A = [(cos theta , -sin theta ),(sin theta , cos theta )] is :

If the matrix [[cos theta,sin theta,0],[sin theta,cos theta,0],[0,0,1]] is singular then theta=

Write the inverse of the matrix {:|(cos theta,sin theta),(-sin theta,cos theta)| .

|[4 sin ^2 theta, cos 2 theta],[ -cos 2 theta,cos ^2 theta]| =

(1+cos 2 theta)/(sin 2 theta)=cot theta

(sin 2 theta)/(1-cos 2 theta)=cot theta

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)

int (cos theta - sin theta)/(sqrt(sin 2 theta) ) d theta=