Home
Class 12
MATHS
intsqrtxe^(sqrtpi)dx=...

`intsqrtxe^(sqrtpi)dx`=

A

`2sqrtx-e^(sqrtx)-4sqrtxe^(sqrtx)+c`

B

`(2x-4sqrtx+4)e^(sqrtx)+c`

C

`(2x+4sqrtx+4)e^(sqrtx)+c`

D

`(1-4sqrtx)e^(sqrtx)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 9

    KCET PREVIOUS YEAR PAPERS|Exercise Mathematics|60 Videos
  • SOLVED PAPER 2011

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|58 Videos

Similar Questions

Explore conceptually related problems

int a^(sqrtx)/sqrtx dx =

intsqrt(ax + b) dx .

int dx/(sqrt(sin^(3)x.cosx))dx =

Find intxe^(x)dx

Find intcosxlog(sinx)dx .

The general solution of the differential equation sqrt(1-x^(2)y^(2)).dx =y.dx+ x.dy is

int cos sqrtx dx =

int (dx)/(2sqrtx(1+x)) dx =

Prove that int_(a)^(b)(x)dx = int_(a)^(b)f(a+b-x)dx and int_(pi/4)^(pi/3)(dx)/(1+sqrt(tanx)) .