Home
Class 12
MATHS
lim(x-1)(tan(x^(2)-1))/(x-1) is equal to...

`lim_(x-1)(tan(x^(2)-1))/(x-1)` is equal to

A

2

B

`1/2`

C

`-2`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • KARNATAKA CET 2006

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • KARNATAKA CET 2008

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xtooo)"{"(x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

Knowledge Check

  • lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

    A
    2
    B
    (-2)
    C
    `oo`
    D
    does not exist
  • Solve the following equations : tan^(-1)(x/y)-"tan"^(-1)(x-y)/(x+y) is equal to

    A
    `(pi)/2`
    B
    `(pi)/3`
    C
    `(pi)/4`
    D
    `(3pi)/4`
  • The value of int(e^(x)((1+x^(2))tan^(-1)x+1))/(x^(2)+1)dx is equal to

    A
    a.`e^(x)tan^(-1)x+c`
    B
    b.`tan^(-1)(e^(x))+c`
    C
    c.`tan^(-1)(x^(e))+c`
    D
    d.`e^(tan^(-1)x)+c`
  • Similar Questions

    Explore conceptually related problems

    The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

    underset(xtooo)lim(cot^(-1)(x^(-a)log_(a)x))/(sec^(-1)(a^(x)log_(x)a)),(agt1), is equal to

    The value of lim_(x rarr 1) ((x^(3) + 2x^(2) + x + 1)/(x^(2) + 2x + 3))^((1-log(x-1))/((x-1)^(2))) is equal to : then f is :

    lim_(x rarr 0)"x sin" (1)/(x) is equal to :

    The value of underset(x to 0)(lim) e^(-4) ((1-x)/(1-x))^(1//x) is equal to