Home
Class 12
MATHS
[[cos^(2)x,sin^(2)x],[sin^(2)x,cos^(2)x]...

[[cos^(2)x,sin^(2)x],[sin^(2)x,cos^(2)x]]+[[sin^(2)x,cos^(2)x],[cos^(2)x,sin^(2)x]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute the following: : [[cos^2x,sin^2x],[sin^2x,cos^2x]] + [[sin^2x,cos^2x],[cos^2x,sin^2x]]

" if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,-cos^(2)x]]" and "B=[[sin^(2)x,cos^(2)x],[-cos^(2)x,-sin^(2)x]]" then find "A+B"

Compute the following:(i) [[a, b],[-b, a]]+[[a, b],[b ,a]] (ii) [[a^2+b^2, b^2+c^2],[a^2+c^2,a^2+b^2]]+[[2ab,2b c],[-2a c,-2a b]] (iii) [[-1 ,4,-6],[ 8 ,5, 16],[ 2, 8, 5]]+[[12 ,7, 6],[ 8, 0, 5],[ 3 ,2, 4]] (iv) [[cos^2x,sin^2x],[sin^2x,cos^2x]]+[[sin^2x,cos^2x],[cos^2x,sin^2x]]

Compute the following: [[cos^2x, sin^2x],[sin^2x, cos^2x]]+[[sin^2x, cos^2x],[cos^2x, sin^2x]]

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is