Home
Class 12
MATHS
" (iv) "int(0)^(2n pi)(|sin x|-[|(sin x)...

" (iv) "int_(0)^(2n pi)(|sin x|-[|(sin x)/(2)|])dx" (where [ ] denotes the greatest integer function and "n in I)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : (i) int_(-1)^(2){2x}dx (where function {*} denotes fractional part function) (ii) int_(0)^(10x)(|sinx|+|cosx|) dx (iii) (int_(0)^(n)[x]dx)/(int_(0)^(n)[x]dx) where [x] and {x} are integral and fractional parts of the x and n in N (iv) int_(0)^(210)(|sinx|-[|(sinx)/(2)|])dx (where [] denotes the greatest integer function and n in 1 )

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int _(0) ^(2npi) (|sin x | - [|(sin x )/(2) | ]) dx is equal to (where [**] denotes the greatest integer function)

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is:

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to