Home
Class 9
MATHS
|[1,1,1],[a^(2),b^(2),c^(2)],[a^(3),b^(3...

|[1,1,1],[a^(2),b^(2),c^(2)],[a^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(ab+bc+ca)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[a ,b ,c],[ a^2,b^2,c^2],[bc, ca, ab]|=|[1, 1, 1],[a^2,b^2,c^2],[a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a b+b c+c a) .

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)

Match the following from List - I to List - II {:("List-I","List-II"),((I)|{:(1,1,1),(a,b,c),(bc,ca,ab):}|=,(a)(a-b)(b-c)(c-a)),((II)|{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3)):}|=,(b)(a-b)(b-c)(c-a)abc),((III)|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=,(c)(a-b)(b-c)(c-a)(a+b+c)):}

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that det[[1,a^(2)+bc,a^(3)1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))det[[1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

Show that |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}| =(a-b)(b-c)(c-a)(ab+bc+ca)

prove that , |{:(a,a^2,a^3+bc),(b,b^2,b^3+ca),(c,c^2,c^3+ab):}|=(a-b)(b-c)(c-a)(abc+bc+ca+ab)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)