Home
Class 11
MATHS
sin2x+cosx=0...

`sin2x+cosx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin 2x+cosx=0

If sin 2x+cosx=0 , then which among the following is /are true ? I. cosx =0 , II. sinx=-(1)/(2) , III x=(2n+1)(pi)/(2),ninZ , IV. x=npi+(-1)^(n)(7pi)/(6),ninZ

Find the general solution of the following equations: sin 2x + cosx = 0

The number of points in (-oo, oo) , for which x^(2)-x sin x-cosx=0 , is :

Find the absolute maximum and the absolute minimum value of the function given by: f(x) = sin^2x - cosx, x in[0,pi]

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is (i)pi/2 (ii)pi (iii)(3pi)/2 (iv)2pi