Home
Class 12
MATHS
int(0)^((pi)/(4))(dx)/(1+sin x)...

int_(0)^((pi)/(4))(dx)/(1+sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx

The value of definite integral int_(0)^((pi^(2))/(4))(dx)/(1+sin^(2)sqrt(x)+cos^(2)sqrt(x))= is

int_(0)^((pi)/(4))sqrt(1+sin2x)dx

int_(0)^((pi)/(4)) sqrt(1+sin 2x) dx =

" 0."int_(0)^( pi/4)(dx)/(2+sin^(2)x)=

Consider A =int_(0)^((pi)/(4))(sin(2x))/(x)dx, then

Consider A =int_(0)^((pi)/(4))(sin(2x))/(x)dx, then

int_ (0) ^ ((pi) / (2)) (sin x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (cos x) / (sin x + cos x) dx = int_ (0) ^ ((pi) / (2)) (dx) / (1 + cot x) = int_ (0) ^ ((pi) / (2)) (dx) / ( 1 + time x) = (pi) / (4)