Home
Class 11
MATHS
The period of (cot(x/4)+tan(x/4))/(1+ta...

The period of `(cot(x/4)+tan(x/4))/(1+tan(x/2)-tanx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

(cot x)/(cotx-cot3x)+(tanx)/(tanx-tan3x)=

prove that (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Solve : tan(x-pi/4)tanx tan(x+pi/4)=(4cos^2x)/(tan(x/2)-cot(x/2))

tan4x = (4tanx (1-tan^2x))/(1-6tan^2x+tan^4x)

Prove the following: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Prove that: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)

tan4x=(4tan x(1-tan^(2)x))/(1-6tan^(2)x+tan^(4)x)