Home
Class 12
MATHS
Let I=inta^b (x^4−2x^2)dx for (a,b) whic...

Let `I=int_a^b (x^4−2x^2)dx` for `(a,b)` which given integration is minimum `(b > 0)` (a) `(sqrt2,-sqrt2)` (b) `(0,sqrt2)` (c) `(-sqrt2,sqrt2)` (d) `(sqrt2,0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let i=int_a^b(x^4-2x^2)dx for (a,b) which given integration is minimum (bgt0) (a) (sqrt2,-sqrt2) (b) (0,sqrt2) (c) (-sqrt2,sqrt2) (d) (sqrt2,0)

Let I=int_(a)^(b)(x^(4)-2x^(2))dx for (a,b) which given integration is minimum (b>0)(a)(sqrt(2),-sqrt(2))(b)(0,sqrt(2))(c)(-sqrt(2),sqrt(2))(d)(sqrt(2),0)

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is (a) sqrt(2)pi (b) pi/(sqrt(2)) (c) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

int_(0)^(2)[x^(2)]dx is :a) 2-sqrt(2) b) 2+sqrt(2) c) sqrt(2)-1 d) -sqrt(2)-sqrt(3)+5

If z= sqrt2 - i sqrt2 is rotated through an angle 45^(@) in the anticlock wise directions about the origin, then the co-ordinates of its new positions are : a)(2,0) b) ( sqrt2, sqrt2) c) (sqrt2,-sqrt2) d) (sqrt2,0)

Tangents are drawn to x^2+y^2=16 from P(0,h). These tangents meet x-axis at A and B.If the area of PAB is minimum, then value of h is: (a) 12sqrt2 (b) 8sqrt2 (c) 4sqrt2 (d) sqrt2