Home
Class 12
MATHS
" f "|2z-4-2i|=|2|sin((pi)/(4)-arg z)" T...

" f "|2z-4-2i|=|2|sin((pi)/(4)-arg z)" Then lram of "z" iy "-

Promotional Banner

Similar Questions

Explore conceptually related problems

If |2z-4-2i|=|z|sin((pi)/(4)-arg z) then the locus of z represents a conic where eccentricity e is

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If |sqrt2z- 3+2i|= |z| |sin ((pi)/(4) + arg z_(1)) + i cos((3pi)/(4) - arg z_(1))| , where z_(1)=1+ (1)/(sqrt3)i , then locus of z is

If |z|=2 and arg(z)=(pi)/(4), find z

If "|z-i|=1 &"Arg(z)=(pi)/(2)" then the "z" is (1) "-2i" (2) "0" (4) "2i"

if Amp((z+2)/(z-4i))=(pi)/(2), then the locus of z=x+iy is

If arg((z-2)/(z+2))=(pi)/(4) then the locus of z is

If z satisfies the condition arg (z + i) = (pi)/(4) . Then the minimum value of |z + 1 - i| + |z - 2 + 3 i| is _______.

If z_(1) = 8 + 4i , z_(2) = 6 + 4i and z be a complex number such that Arg ((z - z_(1))/(z - z_(2))) = (pi)/(4) , then the locus of z is

If Arg ((2 - z)/(2 + z)) = (pi)/(6) and z = x + iy , then the locus of z is