Home
Class 11
MATHS
" Solve "sin^(2)x+cos^(2)y=2sec^(2)z" fo...

" Solve "sin^(2)x+cos^(2)y=2sec^(2)z" for "x,y" and "z

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^2 x+ cos^2 y = 2 sec^2 z

Solve sin^2 x+ cos^2 y = 2 sec^2 z

Solve sin^2 x+ cos^2 y = 2 sec^2 z

Solve sin^2x+cos^2y=2sec^2z for x , y ,a n dzdot

Solve sin^2x+cos^2y=2sec^2z for x , y ,a n dzdot

Solve sin^2x+cos^2y=2sec^2z for x , y ,a n dzdot

Solve sin^2x+cos^2y=2sec^2z for x , y ,a n dzdot

Assertion (A) : The equation Sin^(2)x+Cos^(2)y=2Sec^(2)z is only solvable sinx=1 cosy, 1 and secz=1 where x, y, z in R Reason (R) : Maximum value of Sin x and Cosy is 1 and minimum value of sec z is 1

If x+y=z then cos^(2)x+cos^(2)y+cos^(2)z-2cos x cos y cos z is equal to

Solve for x, y and z : sin^2 x + cos^2 y = 2 sec^2 z