Home
Class 13
MATHS
" What is equal to "int(log x)/((1+log x...

" What is equal to "int(log x)/((1+log x)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

What is int (log x)/((1 + log x)^(2)) dx equal to? where c is a constant

int[log(log x)+(1)/((log x)^(2))]dx

int (1)/(log x)-(1)/((log x)^(2))dx=

int[(1)/(log x)-(1)/((log x)^(2))]dx=

Evaluate: int(log(log x)+(1)/((log x)^(2)))dx

The value of the integral int (dx)/(x (1 + log x)^(2)) is equal to

int (log x)/(x^(2))dx is equal to a) (log x)/(x) + (1)/(x^(2)) +C b) -(log x)/(x) + (2)/(x) + C c) -(log x)/(x) - (1)/(2x) + C d) -(log x)/(x) - (1)/(x) + C

int(x^(x))^(2)(1+log x)

Evaluate int [ " log" (log x) + (1)/((log x )^(2)) ] dx

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx