Home
Class 12
MATHS
If a unit vector hat a in the plane of ...

If a unit vector ` hat a` in the plane of ` vec b=2 hato+ hat j& vec c= hat i- hat j+ hat k` is such that ` vec a vec d` where ` vec d= hat j+2 hat l` , then ` hat a` is `( hat i+ hat j+ hat k)/(sqrt(3))` (b) `( hat i- hat j+ hat k)/(sqrt(3))` `(2 hat i+ hat j)/(sqrt(5))` (d) `(2 hat i- hat j)/(sqrt(5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot