Home
Class 9
MATHS
A B C D IS A PARALLELOGRAM AND O is a...

`A B C D` IS A PARALLELOGRAM AND `O` is any point in its interior. Prove that: `a r\ ( A O B)+\ a r\ ( C O D)=\ a r\ ( B O C)+\ a r( A O D)` `a r\ ( A O B)+a r\ (C O D)=1/2\ a r(^(gm)A B C D)` Given: A parallelogram `A B C D\ a n d\ O` is a point in its interior. To Prove: `a r\ (\ A O B)+\ a r( C O D)=a r\ ( B O C)+a r( A O D)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A B C D is a parallelogram and O is any point in its interior. Prove that: (i) a r\ ( A O B)+a r\ (C O D)=1/2\ a r(A B C D) (ii) a r\ ( A O B)+\ a r\ ( C O D)=\ a r\ ( B O C)+\ a r( A O D)

If A B C D is a parallelogram, then prove that a r\ (\ A B D)=\ a r\ (\ B C D)=\ a r\ (\ A B C)=\ a r\ (\ A C D)=1/2\ a r\ (|""|^(gm)A B C D)

If A B C D is a parallelogram, then prove that a r\ (/_\\ A B D)=\ a r\ (/_\\ B C D)=\ a r\ (/_\\ A B C)=\ a r\ (/_\\ A C D) = 1/2\ a r\ (para l l e l o g r a m A B C D)

If A B C D is a parallelogram, the prove that a r( A B D)=a r( B C D)=a r( A B C)=a r( A C D) =1/2a r (||^(gm) A B C D)

A B C D is a parallelogram whose diagonals intersect at Odot If P is any point on B O , prove that: a r\ ( A D O)=A R\ ( C D O) a r\ (\ A B P)=\ a r\ (\ C B P)

In Figure, P is a point in the interior of a parallelogram A B C D . Show that a r( A P B)+a r( P C D)=1/2a r(^(gm)A B C D) a R(A P D)+a r( P B C)=a r( A P B)+a r( P C D)

In Figure, P is a point in the interior of a parallelogram A B C D . Show that a r( A P B)+a r( P C D)=1/2a r(^(gm)A B C D) a R(A P D)+a r( P B C)=a r( A P B)+a r( P C D)

In Figure, P is a point in the interior of a parallelogram A B C Ddot Show that a r( A P B)+a r( P C D)=1/2a r\ (|""|^(gm)A B C D) a r\ ( A P D)+a r\ ( P B C)=a r\ ( A P B)+a r( P C D)

In Figure, P is a point in the interior of a parallelogram A B C Ddot Show that a r( A P B)+a r( P C D)=1/2a r\ (|""|^(gm)A B C D) a r\ ( A P D)+a r\ ( P B C)=a r\ ( A P B)+a r( P C D)

O is any point on the diagonal B D of the parallelogram A B C D . Prove that a r( /_\O A B)=a r( /_\O B C)