Home
Class 11
MATHS
" If "a,b,c" are positive integers,then ...

" If "a,b,c" are positive integers,then the determinant "Delta=|[a^(2)+x,ab,ac],[ab,b^(2)+x,bc],[ac,bc,c^(2)+x]|" is divisible by "

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta=|{:(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2)):}| is divisible by

The determinant Delta = |(a^(2) + x^(2),ab,ac),(ab,b^(2) + x^(2),bc),(ac,bc,c^(2) + x^(2))| is divisible

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,ac,bc,c^(2)(1+x)):}| is divisible by

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

show that |[a^2+x^2,ab ,ac],[ab,b^2+x^2,bc],[ac,bc,c^2+x^2]| is divisible x^4

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

The determinant |(a^(2)+10,ab, ac),(ab, b^(2)+10, bc),(ac, bc, c^(2)+10)| is

Determinant Delta=|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)| is divisible by a)abc b) x^(2) c) x^(3) d)None of these