Home
Class 12
MATHS
[lim(x rarr0)(sin(6x^(2)))/(ln cos(2x^(2...

[lim_(x rarr0)(sin(6x^(2)))/(ln cos(2x^(2)-x))" is equal to : "],[[" (a) "12," (b) "-12],[" (c) "6," (d) "-6]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to

lim_(x rarr0)(sin(x^(2)-x))/(x)

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(sin^(2)x)/(x)=

lim_(x rarr0x rarr0)(sin(x^(2)))/(ln(cos(2x^(2)-x))) is equal to 2 (b) -2(c)1 (d)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(log(1-x^(2)))/(log cos x)

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0)x log(sin x)