Home
Class 12
MATHS
" If determinant "|[cos^(2)x,sin^(2)x,co...

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

"int(sin^(2)x+cos^(2)x)/(sin^(2)x*cos^(2)x)dx

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

Find:int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx

" if "A=[[cos^(2)x,sin^(2)x],[-sin^(2)x,-cos^(2)x]]" and "B=[[sin^(2)x,cos^(2)x],[-cos^(2)x,-sin^(2)x]]" then find "A+B"

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then