Home
Class 12
MATHS
The range of function f(x)=[[x]-x]+sin^(...

The range of function `f(x)=[[x]-x]+sin^(2)x`, where [.] denotes the greatest integer function, is.

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The range of the function y=[x^(2)]-[x]^(2)x in[0,2] (where [] denotes the greatest integer function),is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

The domain of the function f(x)= ln([[x]]/(5-[x])) where [ . ] denotes the greatest integer function is

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The function f(x)=[x], where [x] denotes the greatest integer function,is continuous at