Home
Class 11
MATHS
Let f ( x ) = e^x/(1+x^2) find f'(x)...

Let `f ( x ) = e^x/(1+x^2)` find f'(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f ( x ) = e^x/(2+x^3) find f'(x)

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If f(x)=e^(x)(x^(2)+1) then find f'(x)

(1) If f(x)=a^(x)*e^(x^(2))" then find "f'(x)

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

Let f'(x)=e^(x)^^2 and f(0)=10. If A

Let f(x)=sinx,g(x)=x^(2) and h(x)=log_(e)x. If F(x)=("hog of ")(x)," then "F''(x) is equal to

Let f:(-oo,1]rarr(-oo,1] such that f(x)=x(2-x). Then find f^(-1)(x)

Let f(x) = (e^(x) - e^(-x))/(2) and if g(f(x)) = x , then g((e^(1002) -1)/(2e^(501))) equals ...........