Home
Class 11
MATHS
The expression (abc)/(s)(cos(A)/(2)cos(B...

The expression `(abc)/(s)(cos(A)/(2)cos(B)/(2)cos(C)/(2))` for `a triangleABC` (symbols has usual meaning) simplify to

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (abc)/(s) cos (A)/(2) cos (B)/(2) cos (C )/(2) = triangle .

If: a/(cos A) = b/(cos B) = c/(cos C) , then triangleABC , is

In a !ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

In Delta ABC,b(cos^(2)C)/(2)+c(cos^(2)B)/(2)=

If semiperimeter of a triangle is 15, then the value of (b+c)cos(B+C)+(c+a)cos(C+A)+(a+b)cos(A+B) is equal to : (where symbols used have usual meanings)

In a Delta ABC if (a+b)cos((B)/(2))=b(a+c)cos((C)/(2)) then prove that the triangle ABC is isosceles.

in /_ABC,(bcsin^(2)A)/(cos A+cos B cos C)

In /_ABC,cos((B+C)/(2))

In triangleABC, 2(b-c)cos^(2)((A)/(2))=

The expression cos^(2)(a+b+c)+cos^(2)(b+c)+cos^(2)a-2cos a*cos(b+c)cos(a+b+c) is indendent of