Home
Class 12
MATHS
If f(x) = int1^x \ lnt/(1+t) \ dt where ...

If `f(x) = int_1^x \ lnt/(1+t) \ dt` where `x>0` then the values of `x` satisfying the equation `f(x)+f(1/x) = 2` are (i)`2` (ii)`e` (iii)`e^(-2)` (iv)`e^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt where x>0, then the values of of ^(1) satisfying the equation f(x)+f((1)/(x))=2 is

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is

If f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt , where xgt0 , find the value of f(x)+f((1)/(x)) and hence show that, f(e)+f((1)/(e))=(1)/(2) .

If f(x) = int_1^(x^(2)) tan^(-1) sqrtt dt, t gt 0 , then f^(')(1)=

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

If f(x)=int_(x)^(x+1) e^(-t^(2)) dt , then the interval in which f(x) is decreasing is