Home
Class 12
MATHS
What happens to a function f(x) at x=...

What happens to a function `f(x)` at `x=a` , if `(lim)_(x->a)f(x)=f(a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x) = 2 . Find lim_(x to 1) f(x)

For the function f(x) = 2 . Find lim_(x to 1) f(x)

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

If a differentiable function f(x) satisfies lim_(x to -1) (f(x) +1)/(x^(2)-1)=(3)/(2) Then what is lim_(x to -1) f(x) equal to ?

The function f(x) =p [x+1] +q [x-1] where [x] is the greatest integer function, and lim _(xto1+) f(x) =lim _(x to 1-) f(x)= f(1) when-

If function f(x) is differentiable at x=a , then lim_(xtoa)(x^(2)f(a)-a^(2)f(x))/(x-a) is :

What is the trigonometric function f(x) such that f''(x)+f(x)=0 ?

Consider the function : f (x) ={(x-2,x 0):} . To find lim_(x to 0) f(x) .

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is

f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Find lim_(xrarra) (xf(a)-af(x))/(x-a)