Home
Class 12
MATHS
यदि x^(3)+y^(3)=t-1/t तथा x^(6)+y^(6)=t...

यदि `x^(3)+y^(3)=t-1/t` तथा `x^(6)+y^(6)=t^(2)+(1)/(t^(2)` तब सिद्ध कीजिये कि`x^(4)y^(2)(dy)/(dx)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1

If x^(3)+y^(3)=t-(1)/(t) and x^(6)+y^(6)=t^(2)+(1)/(t^(2)) then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

x ^(2) + y^(2) = t + 1/t, x ^(4) + y^(4) = t ^(2) + (1)/( t ^(2)) implies x ^(3) y (dy)/(dx) =

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , then the value of -x^(3)y(dy)/(dx) is -

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these