Home
Class 10
MATHS
If x^2+y^2=27xy, then show that log((x-y...

If `x^2+y^2=27xy`, then show that `log((x-y)/(5))=1/2[logx+logy]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2=7xy, then prove that log((x+y)/(3))=1/2(logx+logy).

If x^2+y^2=11xy ,then prove that log((x+y)/13)=1/2(logx+logy)

If x^2+y^2=7xy then show that 2log(x+y)=logx+logy+2log3.

If x^2+y^2=7xy ,then prove that log(x+y)=log3+1/2(logx+logy)

If x^(2) + y^(2) = 23xy , then show that 2log(x + y) = 2log 5 + log x + log y.

if x^(4) + y^(4) = 83 x^(2)y^(2) then prove that log((x^(2) -y^(2))/9) = logx + logy.

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .

If x^2+y^2=25xy. then prove that 2log(x+y)=3log3+logx+logy.

f x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.

f x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.