Home
Class 11
MATHS
A function f is such that f(x+1)=f(x)+f(...

A function `f` is such that `f(x+1)=f(x)+f(1)+1` for all real values of `x`. Find `f(0)` If it is given that `f(1)=1,` find `f(2),f(3) and f(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a function f satisfies f (f(x))=x+1 for all real values of x and if f(0) = 1/2 then f(1) is equal to

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals -1 and f(0)=1, find f(2)

If a function f satisfies f{f (x)}=x+1 for all real values of x and if f(0)=1/2 then f(1) is equal to a) 1/2 b)1 c) 3/2 d)2

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

Let f((x+y)/(2))=(f(x)+f(y))/(2) for all real x and y.If f(0) exists and equals-1and f(0)=1 find f(2)

Let f((x+y)/(2))=(1)/(2)[f(x)+f(y)] for all real x and y. If f'(0) exists and equals (-1),f(0)=1 , find f(2).

If f(x)=x^(2)+3x-5, find f(0),f(1) and f((1)/(2))

Let f be a function such that f(3)=1 and f(3x)=x+f(3x-3) for all x. Then find the value of f(300).

Let f((x+y)/(2))=(f(x)+f(y))/(2) for all real x and y If f'(0) exists and equals -1 and f(0)=1, then find f(2)