Home
Class 12
MATHS
Let vec(alpha),vec(beta) and vec(gamma b...

Let `vec(alpha),vec(beta)` and `vec(gamma` be the unit vectors such that `vec(alpha)` and `vec(beta)` are mutually perpendicular and `vec(gamma)` is equally inclined to `vec(alpha)` and `vec(beta)` at an angle `theta`. If `vec(gamma)=xvec(alpha)+yvec(beta)+z(vec(alpha)xxvec(beta))`, then which one of the folllowing is incorrect?

Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec alpha + vec beta |=| vec alpha - vec beta|, then :

If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vectors such that vec(alpha)+2vec(beta)+3vec(gamma) is collinear with vec(beta)+vec(y) and vec(alpha)+2vec(beta) is collinear with vec(beta)-vec(gamma) , then 2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma) equal to

If vec(alpha), vec(beta),vec(gamma) are three non-collinear unit vectors such that vec(alpha)+2vec(beta)+3vec(gamma) is collinear with vec(beta)+vec(y) and vec(alpha)+2vec(beta) is collinear with vec(beta)-vec(gamma) , then 2vec(alpha).vec(beta)+6vec(alpha).vec(gamma) +3vec(beta).vec(gamma) equal to

If vec(alpha) and vec (beta) are perpendicular to each other , show that | vec(alpha) + vec(beta)|^(2) = |vec(alpha)-vec(beta)|^(2)

If vec alpha+vec beta+vec gamma=0, prove the given equation

If a vector veca is expressed as the sum of two vectors vec(alpha) and vec(beta) along and perpendicular to a given vector vecb then vec(beta) is equal to

If a vector veca is expressed as the sum of two vectors vec(alpha) and vec(beta) along and perpendicular to a given vector vecb then vec(beta) is equal to

If vec alpha and vec beta are two vectors such atht veca. vecb =0 and veca xx vec b =vec0, then: