Home
Class 12
MATHS
If n is a positive integer, show that ...

If n is a positive integer, show that
`(1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

A : (1+i)^(6)+(1-i)^(6)=0 R : If n is a positive integer then (1+i)^(n)+(1-i)^(n)=2^((n//2)+1).cos""(npi)/(4)

If n is a positive integer prove that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))

For a positive integer n show that (1+i)^n+(1-i)^n=2^((n+2)/2) "cos((npi)/4)

If n is a positive integer, then (1+i)^(n)+(1-i)^(n)=

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?

If n is a positive integer, show that, (n+1)^(2) + (n+2)^(2) + …+ 4n^(2) = (n)/(6)(2n+1)(7n+1)

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

If n is a positive integer, then (1+i)^n+(1-i)^n=