Home
Class 12
MATHS
Let q be the range and S^(2)=(1)/(n-1) u...

Let q be the range and `S^(2)=(1)/(n-1) underset(i=1)overset(n)sum (x_(i)-x)^(2)` be the S.D. of a set of observations `x_(1),x_(2),........,x_(n)`. Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let r be the range and S^(2)=(1)/(n-1) sum_(i=1)^(n) (x_(i)-overline(x))^(2) be the SD of a set of observations x_(1),x_(2),.., x_(n) , then

underset(n=1)overset(oo)sum(x^(n))/(n+2)=

If sum_(i=1)^(10)(x_(i)-15)=12 and sum_(i=1)^(10)(x-15)^(2)=18 then the S.D.of observation x_(1),x_(2),x_(3),....x_(10) is:

If f(x)= overset(n) underset(i=1) sum (x-a_(i))^(2) has a minimum at x=x_(0) then for a_(1),.....a_(n),x_(0) is the

If the S.D of x_(1),x_(2),x_(3),........x_(n) is 6, then the S.D of -x_(1),-x_(2),.......,-x_(n) is

If the mean and S.D. of n observations x_(1),x_(2)......x_(n) are x and ? resp,then the sum of squares of observations is