Home
Class 9
MATHS
In Figure, if l1||l2 , what is x+y in te...

In Figure, if `l_1||l_2` , what is `x+y` in terms of `w\ a n d\ z`? (a) `180-w+z` (b) `180+w-z` `180-w-z` (d) `180+w+z`

Promotional Banner

Similar Questions

Explore conceptually related problems

In Figure,if l_(1)l_(2), what is x+y in terms of w and z?180-w+z (b) 180+w-z180-w-z(d)180+w+z

In Figure, what is z in terms of \ a n d\ y ? x+y+180 (b) x+y-180 180^0-(x+y) (d) x+y+360^0

What is the locus of w if w=(3)/(z) and |z-1|=1?

if x , y , z , a n d w be the digits of a number beginning from the left , the number is x y z w (b) w z y x (c) x + 10 y + 100 z + 1000 w (d) 10^3x+10^2y+10 z+w

2x-3z + w = 1x-y + 2w = 1-3y + z + w = 1x + y + z = 1

The number of integers x,y,z, w such that x +y+z+w=20 and x , y, w,z ge -1 is

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If |z| le1 and |w| lt 1 , then shown that |z - w|^(2) lt (|z| - |w|)^(2)+ (arg z - arg w)^(2)