Home
Class 12
MATHS
If alpha,beta,gamma are the roots of x^3...

If `alpha,beta,gamma` are the roots of `x^3+ax^2+bx+c=0` then `Sigma(alpha/beta+beta/alpha)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

IF alpha , beta are the roots of ax^2+bx +c=0 then ((alpha )/(beta )-(beta )/( alpha ))^2 =

If alpha,beta, gamma are the roots of 4x^(3) - 6x^(2) + 7x + 3 = 0 then alpha beta + alpha beta + alpha gamma =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha, beta, gamma are roots of x^(3) + ax^(2) + bx + c = 0 then sum alpha^(2) beta =

IF alpha , beta are the roots of ax ^2 + bx +c=0 then (alpha ^2)/( beta ) +( beta ^2)/( alpha )

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha, beta, gamma are the roots of x^(3) + x^(2) + x + 1 = 0 then (alpha - beta)^(2) + (beta - gamma)^(2) + (gamma - alpha)^(2) =