Home
Class 11
MATHS
If f(x)=x+(1)/(x), then prove that : {...

If `f(x)=x+(1)/(x)`, then prove that :
`{f(x)}^(3)=f(x^(3))+3*f((1)/(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

ff(x)=x+(1)/(x), thenprovethat [f(x)]^(3)=f(x^(3))+3f((1)/(x))

(i) If f(x) = x + (1)/(x) prove that: [f(x)]^(3) = f(x^(3)) + 3f ((1)/(x)) (ii) If f(x) = x^(3) - (1)/(x^(3)) , prove that f(x) + f((1)/(x)) = 0 (iii) If f(x) = (1-x^(2))/(1+ x^(2)) , prove that f (tan theta) = cos 2 theta

If f(x),=x+(1)/(x), prove that [f(x)]^(3),=f(x^(3))+3f((1)/(x))dots

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If ‘f’ is a real function defined by : f(x)= (x-1)/(x+1) , then prove that f (2x) = (3 f(x)+1)/(f(x)+3) .

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2 x)=(3f(x)+1)/(f(x)+3) .

If f(x)=(1-x)/(1+x), prove that f[f{f(1/x)}]=-f(x)