Home
Class 12
MATHS
Consider the three vectors p, q, r such ...

Consider the three vectors p, q, r such that `p=hat(i)+hat(j)+hat(k) and q=hat(i)-hat(j)+hat(k) , ptimesr=q+cp and p*r=2`
Q.The value of [p q r] is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors 2 hat(i) - q hat(j) + 3 hat(k) and 4 hat(i) - 5 hat(j) + 6 hat(k) are collinear then find the value of q.

Two vector vec(P) = 2hat(i) + bhat(j) + 2hat(k) and vec(Q) = hat(i) + hat(j) + hat(k) are perpendicular. The value of b will be :

Two vector vec(P) = 2hat(i) + bhat(j) + 2hat(k) and vec(Q) = hat(i) + hat(j) + hat(k) are perpendicular. The value of b will be :

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)