Home
Class 12
MATHS
The number of distinct real roots of the...

The number of distinct real roots of the equation `|[cosec theta,sec theta,sec theta],[sec theta,cosec theta,sec theta],[sec theta,sec theta,cosec theta]|=0` in the interval `[-(pi)/(4),(pi)/(4)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos theta cosec theta-sin theta sec theta)/(cos theta+sin theta)=cosec theta-sec theta

(tan theta)/(sec theta+1)+(cot theta)/(csc theta+1)=csc theta+sec theta-csc theta sec theta

(cosec theta-sin theta)(sec theta-cos theta)=sin theta. cos theta

prove that tan theta/(sec theta+1)+cot theta/(cosec theta+1)=cosec theta+sec theta-cosec theta. sec theta

tan theta+(1)/(tan theta)=sec theta cosec theta

" (2.) "tan theta+cot theta=sec theta cosec theta

(sec theta+tan theta)/(csc theta+cot theta)=(csc theta-cot theta)/(sec theta-tan theta)

(cosec theta)/(cosec theta-1)+(cosec theta)/(cosec theta+1)=2sec^2theta

The number of real roots of the equation cosec theta + sec theta-sqrt(15)=0 lying in [0, pi] is

Prove that: cot theta + tan theta = cosec theta sec theta .