Home
Class 12
MATHS
Let A=[a(ij)]and B=[b(ij)] be two 3times...

Let A=`[a_(ij)]`and `B=[b_(ij)]` be two `3times3` real matrices such that `b_(ij)=(3)^((i+j-2))a_(ji)` ,where `i,j=1,2,3 .If the determinant of B is 81 ,then the determinant of A is

A

`2^(11)`

B

`2^(12)`

C

`2^(13)`

D

`2^(10)`

Text Solution

Verified by Experts

We have, `abs(Q) = abs((2^(2) a_(11) ,2^(3)a_(12), 2^(4) a_(13)),(2^(3)a_(21),2^(4)a_(22),2^(5) a_(23) ),(2^(4)a_(31),2^(5)a_(32),2^(6)a_(33)))`
` =2^(2) cdot 2^(3)cdot2^(4) abs(( a_(11) ,a_(12), a_(13)),(2a_(21),2a_(22),2 a_(23) ),(2^(2)a_(31),2^(2)a_(32),2^(2)a_(33)))`
` =2^(9) cdot 2cdot2^(2) abs(( a_(11) ,a_(12), a_(13)),(a_(21),a_(22), a_(23) ),(a_(31),a_(32),a_(33))) = 2^(12) abs(P)`
`therefore abs(Q)=2^(12)xx2=2^(13)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)] and B=[b_(ij)] be two 3xx3 real matrices such that b_(ij)=(3)(i+j-2)a_(ji) , where i, j = 1,2,3. If the determinant of B is 81, then the determinant of A is :

Let A = [a_(ij)], B=[b_(ij)] are two 3 × 3 matrices such that b_(ij) = lambda ^(i+j-2) a_(ij) & |B| = 81. Find |A| if lambda = 3.

Let P = [a_(ij)] " be a " 3 xx 3 matrix and let Q = [b_(ij)], " where " b_(ij) = 2^(I +j) a_(ij) " for " 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

Let P=[a_("ij")] be a 3xx3 matrix and let Q=[b_("ij")] , where b_("ij")=2^(i+j) a_("ij") for 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is

A is a 2xx2 matrix, such that A={:[(a_(ij))]:} , where a_(ij)=2i-j+1 . The matrix A is

Let A=[a_("ij")] be 3xx3 matrix and B=[b_("ij")] be 3xx3 matrix such that b_("ij") is the sum of the elements of i^(th) row of A except a_("ij") . If det, (A)=19 , then the value of det. (B) is ________ .