Home
Class 12
MATHS
lim(n rarr oo)(n^(2))/(2^(n))...

`lim_(n rarr oo)(n^(2))/(2^(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

Discuss the continuity of f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n+1))

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

lim_(n rarr oo) (n(n+1))/(n^(2))= ________.

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1),x in R, the the the points where f(x) is not continuous are