Home
Class 12
MATHS
If alpha+ibeta=tan^(-1) (z), z=x+iy and ...

If `alpha+ibeta=tan^(-1) (z), z=x+iy` and `alpha` is constant, the locus of 'z' is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+ibeta=tan^(-1)z , z=x+iy and alpha is constant, then locus of z is:

If alpha + ibeta = tan^(-1) (z) , z = x +iy and alpha is constant then the locus of z is

If z=x+iy and real part ((z-1)/(2z+i))=1 then locus of z is

If z=x+iy and real part ((z-1)/(2z+1))=1 then locus of z is

If (pi)/(8)+i beta=cot^(-1)(z) where z=x+iy then the locus of z is