Home
Class 12
MATHS
Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) ...

Define: `tan^(-1)((3x-x^(3))/(1-3x^(2)))` in terms of `tan^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .

If -1/(sqrt(3))

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

If y = tan ^(-1) ((2x )/( 1 -x ^(2))) + tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))- tan ^(-1) ((4x - 4x ^(3))/( 1 - 6x + x ^(4))), then show that (dy)/(dx) = (1)/(1 + x ^(2)).

Prove that: i) sin^(-1)(3x-4x^(3))=3sin^(-1)x, |x| le 1/2 ii) cos^(-1)(4x^(2)-3x)=3cos^(-1)x,1/2 le x le 1 iii) tan^(-1)""(3x-x^(3))/(1-3x^(2))=3tan^(-1)x, |x| lt 1/sqrt(3) iv) tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)""(3x-x^(3))/(1-3x^(2))

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}