Home
Class 11
MATHS
S=1+a+a^(2)+..........a अनन्त तक, तो a=...

`S=1+a+a^(2)+..........a` अनन्त तक, तो a=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

Let S_(1), S_(2), ...... S_(101) be consecutive terms of A.P. If 1/(S_(1)S_(2)) + 1/(S_(2)S_(3)) + ...... + 1/(S_(100)S_(101)) = 1/6 and S_(1) + S_(101) = 50 , then |S_(1) - S_(101)| is equal to

If S_(1), S_(2), S_(3),….., S_(n) are the sum of infinite geometric series whose first terms are 1,3,5…., (2n-1) and whose common rations are 2/3, 2/5,…., (2)/(2n +1) respectively, then {(1)/(S_(1) S_(2)S_(3))+ (1)/(S_(2) S_(3) S_(4))+ (1)/(S_(3) S_(4)S_(5))+ ........."upon infinite terms"}=

If S_(1), S_(2), S_(3),….., S_(n) are the sum of infinite geometric series whose first terms are 1,3,5…., (2n-1) and whose common rations are 2/3, 2/5,…., (2)/(2n +1) respectively, then {(1)/(S_(1) S_(2)S_(3))+ (1)/(S_(2) S_(3) S_(4))+ (1)/(S_(3) S_(4)S_(5))+ ........."upon infinite terms"}=

S_(n) = (1+2+3+....+n)/( n) then S_(1)^(2) + S_(2)^(2) + S_(3)^(2) + ..... + S_(n)^(2) =

If a+1/a=2 , what is the value of (a^6+1/a^6) ? अगर a+1/a=2 , है, तो (a^6+1/a^6) किसके समान होगा?

If a+1/a=2 , what is the value of (a^4+1/a^4) ? अगर a+1/a=2 , है, तो (a^4+1/a^4) का मूल्य क्या है?