Home
Class 12
MATHS
If pi/5 and pi/3 are the arguments of ba...

If `pi/5` and `pi/3` are the arguments of `bar(z)_(1)` and `bar(z)_(2),` then the value of `arg(z_(1))+arg(z_(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If (pi)/(3) and (pi)/(4) are arguments of z_(1) and bar(z)_(2), then the value of arg (z_(1)z_(2)) is

Write the value of arg(z)+arg(bar(z))

If (pi)/(2) and (pi)/(4) are the arguments of z_ (1) and bar (z_ (2)) respectively, then Arg ((z_ (1))/(z_ (2)) ) = (i) 3 (pi)/(4) (ii) (pi)/(4) (iii) pi (iv) (pi)/(3)

If arg (bar (z) _ (1)) = arg (z_ (2)) then

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If arg((z_(1))/(z_(2)))=(pi)/(2), then find the value of |(z_(1)+z_(2))/(z_(1)-z_(2))|

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

arg(z_(1)z_(2))=arg(z_(1))+arg(z_(2))

If arg(z)=-(pi)/(4) then the value of arg((z^(5)+(bar(z))^(5))/(1+z(bar(z))))^(n) is