Home
Class 12
MATHS
The three points [(a+b)(a+2b),(a+b)],[(a...

The three points `[(a+b)(a+2b),(a+b)],[(a+2b)(a+3b),(a+2b)]` and `[(a+3b)(a+4b),(a+3 b)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

-3 (a + b) + 4 (2a - 3b) - (2a - b)

4a+[2a-{3b+(3a-2b)]}

a(a+b)^3-3a^2b(a+b)

If the area of the triangle formed by the points (2a,b), (a+b, 2b+a) and (2b, 2a) be Delta_(1) and the area of the triangle whose vertices are (a+b, a-b), (3b-a, b+3a) and (3a-b, 3b-a) be Delta_(2) , then the value of Delta_(2)//Delta_(1) is

PQ=(a)/(2b)sqrt((a+b)(3b-a))

(2a+3b)(a-b)=2a^(2)-3b^(2)

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 3a ^(2) b ^(3) - 27 a ^(4) b

Verify that (a-b) (a -b) (a-b) = a ^(3) - 3a ^(2) b + 3a b ^(2) - b ^(3)